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INTRODUCTION 

SRI International (SRI) is pleased to present this final report under Contract 
F30602-93-C-0071, Machine Learning for Military Operations Planning, to Rome Laboratory 
(RL) of the United States Air Force (US AF) and the Defense Advanced Research Projects Agency 
(DARPA). The work described is part of the DARPA/RL Planning Initiative (ARPI): specifically, 
the progress made during this contract to develop intelligent tools for acquiring, refining, and 
validating knowledge bases for a military operations planning system. 

As with most large-scale AI projects, one of the most significant obstacles to developing 
intelligent decision support systems is knowledge engineering. Large quantities of domain 
knowledge are required for the effective reasoning about large-scale, real-world problems. 
Therefore, tools for knowledge acquisition must be developed before fully operational crisis 
response planning systems can be built. We emphasize the use of the term knowledge acquisition, 
rather than knowledge engineering, to distinguish our goal, building tools that take an active role 
in acquiring knowledge, from the more traditional approach of an AI expert, creating a knowledge 
representation and encoding the knowledge base by hand. 

It is our view that knowledge acquisition tools should (1) enable human planners to transfer 
their expertise to the system, (2) support the acquisition of knowledge from on-line sources, and 
(3) integrate information from the range of available sources, including human experts, simulators, 
on-line databases, training exercises, and actual crises. To meet these needs, SRI has developed the 
Knowledge Acquisition Toolkit (KATY), a package of knowledge acquisition tools for the System 
for Interactive Planning and Execution (SlPE-2), SRI's generative planning system. KATY includes 
three knowledge editing tools (the Operator Editor, Object Editor, and Predicate Editor) and two 
machine learning tools (the Operator Learner and the Probabilistic Autonomous GOal-Directed 
Agent [PAGODA], an inductive learning system). 

The graphical Operator Editor allows users to develop new planning operators and revise 
existing operators. This tool also supports editing of the object hierarchy via an interface from 
SlPE-2 to SRI's Generic Knowledge Base (GKB) Editor. The Predicate Editor allows user to view, 
add, and modify the predicates that define the world state. 

The Operator Learner uses the PAGODA learning model [desJardins 1992] to acquire planning 
operators via feedback from simulators and from the user's planning processes. The user first 
enters partially specified operators that reflect an initial rough description of how a subgoal may 
be solved. The Operator Learner then "fills in the blanks," identifying appropriate preconditions 
and temporal constraints on the application of the operator. Thus, the user contributes expertise, 
while the automated learning tool performs much of the tedious work of developing preconditions 
and identifying precisely when it is appropriate to apply a particular operator. 

PAGODA, which was originally developed as part of Dr. Marie desJardins's dissertation 
research [desJardins 1992], has been enhanced under this contract. Specifically, SRI made a 
number of extensions and improvements to PAGODA to support the inductive learning required for 
the Operator Learner, and developed a generic interface for describing input features and training 
examples. 

*The GKB Editor was developed by SRI under Contract F30602-94-C-0263 to Rome Laboratory, Generic 
Knowledge Base Browser and Editor. 



This report describes the progress made on the development of KATY during the 3-year 
contract. Section 1 summarizes our accomplishments. Section 2 defines the problems we 
addressed and the rationale for our solutions. KATY and its components are described in Section 3. 
Section 4 describes the various simulators that we reviewed in developing the current 
demonstration scenario. Evaluation metrics are discussed in Section 5. Related work is surveyed 
in Section 6. Section 7 contains a list of publications written under this contract. In Section 8 we 
present our conclusions and describe future work. In Section 9 we list referenced documents. 

1    SUMMARY OF ACCOMPLISHMENTS 

Our accomplishments during this contract are listed below and are described in detail in the 
cited sections. 

• We ported PAGODA, an inductive machine learning system [desJardins 1992], from 
ZetaLisp/Flavors* into Lucid Common Lisp/Common Lisp Object System (CLOS). 
The system now runs on any standard Common Lisp and/or CLOS platform. We also 
rewrote substantial parts of the system to increase its efficiency and generality 
(Subsection 3.2.5). 

• We implemented an Operator Editor (Subsection 3.1) based on SRI's Act Editor 
[Wilkins et al. 1994]. Many of our extensions of the Operator Editor have been 
incorporated into the Act Editor. 

• We implemented an Operator Learner that uses qualitative constraints on a partial 
operator to create a series of experiments, use those experiments to generate plans, 
evaluate the plans, extract training instances, and apply inductive methods to the 
instances in order to learn preconditions for operator application (Subsection 3.2). 
We extended this system to support learning from the user's choices, by creating 
training examples for each operator choice the user makes during planning 
(Subsection 3.2.5). 

• We developed and implemented an abstraction language for qualitative constraints 
that allows the user to specify what information is relevant to the success of the 
operator, without actually writing specific preconditions (Subsection 3.2.1). 

• We developed a generic input language for PAGODA (Subsection 3.2.5). This 
language enables PAGODA to accept training examples in a range of formats, and can 
also serve as a generic interface from the Operator Learner to other inductive 
learning systems. 

• We created demonstration scenarios for the military and oil-spill application 
domains, and explored a number of simulators and evaluation tools in the military 
domain (Section 4). 

• We ported SOCAPt and KATY to Allegro Common Lisp and CLIM 2.0. 

*A11 project and company names mentioned in this document are the trademarks of their respective holders. 
tSocAP: System for Operations Crisis Action Planning [Bienkowski 1995]. 



We created a World Wide Web home page for the project 
(ht^://www.erg.srixonVpeople/marie/papers/ml-surnmary.html). 
We presented project-related talks at the 1994 IEEE Conference on Tools with AI 
[desJardins 1994b], the 1994 Fall Symposium on Planning and Learning [desJardins 
1994c], the 1994 Fall Symposium on Relevance [desJardins 1994d], the 1995 AAAI 
Fall Symposium on Active Learning, Stanford University, Carnegie Mellon 
University, the University of Massachusetts, Rome Laboratory, and several ARPI 
workshops. 

2    MOTIVATION 

One of the most time-consuming and critical tasks in the development of crisis response 
planning systems is knowledge engineering. For example, a significant part of the development 
effort for SOCAP [Bienkowski 1995], a prototype military operations planning system based on the 
AI generative planning system, SlPE-2, consisted of writing and debugging planning operators. 
This process required an AI expert; it would have been difficult to teach an AI-naive domain expert 
how to write and debug planning operators, using the few tools that SlPE-2 provided [Desimone et 
al. 1993]. 

Our experience suggested, however, that given the appropriate tools, human planners who 
were not AI experts could construct knowledge bases for AI planning systems. These tools should 
guide the user through the operator development and debugging process, and should embody the 
expertise about the planning representation that currently must be provided by an AI knowledge 
engineer. These tools should also support both the construction of the initial knowledge base and 
the updating of the knowledge over the life of the planning system. Continuous updating of the 
knowledge base is essential to ensure that the planning system is not constrained by a pre-existing 
knowledge base and can be used for unforeseen types of operations and situations. The tools will 
be used for knowledge acquisition and also will enable the system to learn—that is, to improve its 
performance over time. 

3    KATY 

Each operator in SlPE-2 specifies a method for achieving a single mission or task, including 
the actions required, preconditions for using the specified method, temporal constraints among the 
actions, and expected effects of the actions. Previously, these operators had to be developed 
manually by AI planning experts who edited ASCII descriptions of the operators. This process was 
tedious, prone to errors, and difficult for users who were not AI experts. 

KATY is a package of knowledge acquisition tools that simplifies this process and reduces the 
likelihood of errors. If extended through future development, these tools will eventually allow 
AI-naive domain experts to transfer their knowledge directly to SlPE-2. 



KATY provides two types of tools: knowledge editors and knowledge refiners. Knowledge 
editors provide graphical editing functions for creating and modifying planning knowledge. KATY 
includes tools for editing operators (the Operator Editor), class hierarchies (the Object Editor), and 
knowledge about the state of the world (the Predicate Editor). Knowledge refiners automatically or 
interactively analyze and improve the knowledge base. KATY's Operator Learner is a knowledge 
refiner that learns the preconditions for applying planning operators by using evaluation feedback 
from a simulator, an automated evaluation tool, or the domain expert's planning choices. 

Several critical issues are associated with knowledge acquisition tools in general, and tools 
based on automated learning in particular: 

1. It is difficult to get domain experts to understand and use new tools. 
2. Automated learning methods must rely on possibly inaccurate or incomplete data. 
3. Training data may be difficult and expensive to collect, and training instances may 

be quite large in complex domains. 
Consideration of these issues led us to define three desiderata for KATY: 

1. Graphical interfaces and semiautomated verification techniques should be used to 
simplify user training. 

2. Data from a variety of sources including multiple simulators and evaluation tools, as 
well as user behavior, should be incorporated into KATY, to reduce uncertainty in the 
acquired knowledge. 

3. Partial knowledge and other guidance provided by the user should be used to reduce 
the size and number of required training instances. 

In the first year of this effort, we implemented the Operator Editor. This graphical editing tool 
for planning operators enables users to develop new operators and edit existing ones. An intelligent 
interface guides users through the development process, ensuring that the knowledge is in the 
correct form. In the second year, we implemented the Operator Learner, an inductive learning 
module that tests and refines these partial operators. In the third and final year of the project, we 
extended the inductive learning system, improved the experiment generation and selection 
techniques of the Operator Learner, and extended the Operator Learner to observe and learn from 
expert planning behavior. 

3.1     OPERATOR EDITOR 
The Operator Editor provides a graphical interface (shown in Figure 1) for creating and 

modifying SlPE-2 planning operators. The plot of the operator is displayed as a graph, with nodes 
that correspond to actions and subgoals, and edges that indicate temporal relationships among these 
nodes. The other information associated with the operator can be displayed as buttons or text fields 
(like the preconditions in Figure 1). 

The Operator Editor has four significant advantages over the methods previously provided in 
SlPE-2 for developing operators: first, the operators are easier to understand because they are 
displayed and edited graphically, rather than as ASCII text. Second, all editing is done via 
templates, so that the possibility of syntactic errors is avoided. Third, a data dictionary is 
maintained to ensure that all classes, variables, and predicates entered are in the correct format. 
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Figure 1. Operator Editor Graphical Display 

Finally, developing the plot as a graph rather than as a text description of the branches in the plot 
is less prone to error, especially since the Operator Editor automatically maintains the parallel, 
structure of the graph. 

The method we have used to build the Operator Editor can best be described as evolutionary 
development. We used the Operator Editor at SRI to develop operators for the military planning 
domain and for a United States Coast Guard (USCG) project in which SlPE-2 was applied to 
oil-spill response planning [Desimone and Agosta 1993]. We also introduced additional 
functionality and updated the user interface, based on feedback from the ongoing usage of the 
editor. We plan to use the editor more extensively in a new NRaD -funded project to apply SlPE-2 
to maritime crisis action planning. The editor will thus continue to evolve, in response to 
requirements generated by its actual users. 

*NRaD: Naval Command, Control, and Ocean Surveillance Center (NCCOSQ Research, Development, Test, and 
Evaluation Division. 



The Operator Editor is based on SRI's Act Editor. The Act Editor uses the Act representation 
for procedural knowledge, which subsumes SlPE-2's operator representation. Because the Act 
representation used in the editor is different from SlPE-2's internal representation, operators must 
be translated back and forth between the two representations. (This translation is done 
automatically by the software.) We have tailored the Operator Editor to users who are familiar with 
SlPE-2's representation, but do not necessarily understand the details of the Act representation. For 
the remainder of this report we will refer to "operators," although in the editor they are internally 
represented as Acts. 

The Operator Editor can be used during planning and replanning, as well as during knowledge 
development. In particular, whenever SlPE-2 fails to solve a problem, the user has the option of 
entering the Operator Editor. Any operators that the user adds or modifies during the Operator 
Editor session are made available to SlPE-2 when the editor is exited. For example, if SlPE-2 fails 
to solve a goal because no operator has a purpose that matches the goal, the user can enter the 
Operator Editor, build an operator that represents a subplan for solving that goal, and return to 
SlPE-2; the new operator will be used to expand the goal in the plan without any need for 
backtracking. 

The Operator Editor provides consistency checking and type checking throughout operator 
development. The goal is to support the users by giving them as much assistance as possible, 
without constraining them to a particular model of operator development. 

We developed an abstraction language for expressing qualitative constraints (QCs) (see 
Subsection 3.2.1) and used this language to extend the Operator Editor to support the writing of 
operators. Thus, users can develop partial operator descriptions that can be fed into the inductive 
learning tool. The QCs shown in Figure 2 are examples of abstract preconditions that must be 
instantiated by the machine learning system. For example, the second QC states that the sea-state 
(roughness of the water) in the sea sector where an operation is being performed 
(sea-sector. 1), at the time of the operation (latest. 1), is relevant to the success of the 
operation. The asterisk (*) indicates that the sea-state value is unknown (i.e., the range of 
acceptable values must be determined by the inductive learning system.) We will return to this 
example in Subsection 3.2. 

All of the fields in an operator are displayed graphically on the screen. Normally, the plot 
nodes and edges are drawn as a graph, and the other fields (purpose, preconditions, etc.) appear as 
buttons. Left-clicking  on any button, node, or edge causes a description of the contents of that 
object to be printed in the interaction window. Middle-clicking on an object copies it into an edit 
buffer, which can then be pasted into another operator. Right-clicking edits the object. 

We have developed a toolkit of CLIM-based dialog boxes that can be used to build templates 
for editing a variety of objects (an example is shown in Figure 3). Each field in a dialog box has an 
associated type that defines the set of legal completions, which the user can access as a menu of 
choices. If the user enters an object that is not in this set, the system either signals an error or 
defines a new object, depending on the context. Each domain's knowledge base has an associated 
data dictionary, which is built automatically by the Operator Editor and contains the set of known 
predicates (along with their arities and argument types), classes, and objects. This data dictionary 
is used to generate the completion sets in the dialog boxes. 

*The phrases "left-clicking," "middle-clicking," and "right-clicking" mean clicking the left, middle, and right-hand 
mouse buttons. 



OPERATOR: ml-get-booml 
ARGUMENTS: vessell, boom-levell, numericall, sea-sectorl, 

sea-statel, booml, numerical2 is (length-boom-ft booml); 
INSTANTIATE: booml; 
PURPOSE: (level>= vessell boom-levell numericall); 
PRECONDITION: (in-service booml); 
Properties: 

NONLOCAL-VARS = (sea-state.1 sea-sector.1 latest.1), 
QC = ((%property max-sea-state boom.l *) 

(sea-state sea-sector.1 latest.1 *) ) ; 
PLOT: 
PARALLEL 

BRANCH 1: 
GOAL 

GOALS: (located booml sea-sectorl); 
RESOURCES: booml; 

PROCESS 
ACTION: deploy-boom; 
ARGUMENTS: booml, sea-sectorl, vessell, boom-levell, 

numerical2; 
RESOURCES: booml; 
EFFECTS: (boom-deployed booml vessell), 

(produce vessell boom-levell numerical2); 
BRANCH 2: 

GOAL 
GOALS: (level>= vessell boom-levell numericall); 
ARGUMENTS: vessell, boom-levell, numericall, sea-sectorl, 

sea-statel; 
END PARALLEL 
END PLOT END OPERATOR 

Figure 2. ML-Get-Boom1 Operator 

Dialog boxes are used during the execution of menu- and mouse-based editing commands, to 
add and delete nodes, edges, and values in the fields of the operator (e.g., preconditions and 
resources). Additionally, the user can reposition nodes in the graphical display and can toggle the 
appearance of operator fields (which can be viewed as buttons or as text boxes in the graphical 
display). 

When the user adds or deletes an edge, the graph structure required by SIPE-2 is maintained 
automatically. In particular, no cycles are permitted, and whenever a node has two successors, 
there must be an intervening Split node and a corresponding Join node at the ends of the branches. 
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LOOP: 
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Figure 3. Dialog Box 

3.2     OPERATOR LEARNER 
The Operator Learner refines the partial operators created by the user in the Operator Editor 

by learning the preconditions that the planning system uses to determine when the operators can 
be applied. 

The Operator Learner uses an operator's qualitative constraints (QCs): partial knowledge 
specified by the user) to generate a series of experiments, each of which specifies a set of 
constraints on the planning process. By varying these constraints, the Operator Learner tests the 
quality of the plans produced by using the operator under a range of conditions. An external 
module evaluates the plan, and the Operator Learner again uses the QCs to extract training 
instances describing the world state, plan, and evaluation result. 

PAGODA analyzes these training instances to create a hypothesis of the conditions under 
which the operator is expected to succeed. The result is interpreted by the Operator Learner as a 
precondition for the operator, and is incorporated into the operator definition, subject to the expert 
user's approval. 

The system learns preconditions via feedback from a simulator or by observing the user's 
planning choices. The simulator feedback tells the system what actions succeeded and how long it 
took to complete these actions. What will be learned in this case is a description of a particular 
operator's success in the simulator (i.e., the world state in which the operator succeeds); therefore, 
the learned knowledge is only as accurate and complete as the simulation. However, if multiple 
simulators are used, their "domains of expertise" could be combined for completeness. 

8 



The user's planning choices are indications of the user's belief that a particular operator will 
succeed. If the user chooses operator A over operator B in a particular context, it is assumed that 
operator A is "successful" in that context and operator B "fails." Typically, the user has knowledge 
that is not captured in the system (which is why the preferred mode of the planning system is 
interactive). Learning methods based on observing the user allow us to make explicit some of this 
previously unrepresented knowledge. This process and some problems that arise in its application 
are discussed in Subsection 3.2.5. 

The architecture of the Operator Learner is shown in Figure 4. The Operator Learner is 
composed of four major processes (Operator Creation, Operator Refinement, Experiment 
Generation, and Data Generation), each with one or more subprocesses. These processes are 
described in the following subsections. 

3.2.1     Operator Creation 
The Operator Editor is used to create one or more operators with partial preconditions, 

represented as QCs, that represent user-provided guidance that may be partial or incomplete. The 
QCs are used to guide the learning process. By expressing QCs, users can intuitively specify 
abstract constraints on the operator (e.g., by specifying relevant properties for determining 
success), even when they cannot precisely and completely specify the actual constraints. Some 
examples of QCs follow: 

• "Bad weather usually delays transportation actions, and air movements are more 
likely to be delayed than sea movements." 

• "The equipment required to clean up an oil spill depends on the type and amount of 
oil, weather, water currents, and response time." 

• "Republicans are less likely than Democrats to vote for social programs." 
None of these QCs are precise enough to be used as preconditions by the planning system, but they 
significantly constrain the space of possible preconditions, making the automated learning of 
preconditions via refinement of the QCs computationally feasible. In the current KATY 
implementation, QCs represent generalizations of preconditions (predicates with underspecified 
arguments). The system fills these in by systematically varying the values of the arguments (see 
Subsection 3.2.2). 

The QCs of an operator are specified on its properties slot, and can be created and modified 
in the Operator Editor. Each QC matches SlPE-2 predicates or properties of objects in the SEPE-2 
sort hierarchy. Arguments to a QC can be a wild card (*) that matches anything, arguments 
(variables) of the operator that contains the QC, or objects or classes (the latter match any object 
of that class). Negated predicates are allowed. 

For example, the QCs of the operator ml -ge t -booml, shown in Figure 2, are (%property 
max-sea-state boom.l*) and (sea-state  sea-sector. 1   latest .1 *). The first QC 
refers to the max-sea-state property of the variable boom. 1 (the most severe level of ocean 
conditions under which the boom is effective). The user has indicated that the max-sea-state 
can take on any value with the asterisk (*) as an argument, so the Operator Learner will have to 
use its learning methods to identify the correct value(s). The second QC indicates that the 
sea-state predicate (ocean conditions) for sea-sector. 1 (the location of the operation) at 
time latest. 1 is relevant. Again, * indicates that the value has not been constrained, so the 
system must learn the correct value. 
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3.2.2 Operator Refinement 
The Operator Refinement process provides the overall control for the Operator Learner. The 

Learning Control subprocess decides which operator to learn (currently, this decision is made when 
the user explicitly invokes the learning system) and calls the Experiment Generation process. The 
Inductive Learning subprocess provides a generic interface to an external inductive learning 
module. We are currently using PAGODA (Subsection 3.2.5) as this module. However, this 
interface has been developed in a general, transparent way that permits the use of other inductive 
learning software. 

After inductive learning takes place, the learning system must decide whether to continue 
generating experiments, or whether to stop learning. Learning should stop when one or more 
acceptable preconditions based on the QCs have been learned, or when none could be found. At 
present, the user enters this decision manually, after the system asks the user whether to continue. 
If more learning is required, another experiment is selected and the loop continues. If no more 
learning is to be done, the learned preconditions are passed back to the Learning Control process. 
The preconditions are then presented to the user, who indicates whether or not to add them to the 
operator and adjusts the operator's QCs. Again, this process is currently manual; an open problem 
is to develop methods for automating the process. Finally, the updated operators are stored in the 
domain knowledge base. 

3.2.3 Experiment Generation 
Using the QCs in the operator(s) to be learned, the Generate Experiments subprocess 

generates a list of experiments. Each experiment represents a set of constraints to be applied during 
the planning process, and consists of a problem to solve, operators to select, variable bindings to 
apply during operator expansion, additional world predicates to establish, and new objects and 
properties to define. Arguments to the QC that are filled with variables are either predefined (for 
nonlocal variables that are bound before this operator is even applied) or are to be selected by the 
QC (for local variables whose values need to be set in accordance with the constraints specified in 
the precondition). The two types of variables require different constraints on the planning process 
to establish their values. 

The other arguments (* or class names) are values that provide constraints for determining 
whether or not to select this operator, and for instantiating the other variables within the operator. 
These values, however, cannot be set directly; they are dependent on the variable choices (e.g., in 
ml-get-booml, themax-sea-state value  * depends on the choice of boom. 1). For 
example, in the ml-get-booml operator in Figure 2, the first QC indicates that the resource 
boom. 1 should be selected, in part, on the basis of its max-sea-state value. That is, the variable 
boom. 1 should be bound to a boom with an appropriate value for max-sea-state, where the 
meaning of appropriate is yet to be defined. Moreover, selecting a boom with an inappropriate 
value for max-sea-state may cause the operator to fail. The second QC indicates that the 
sea-state at the place and time of the operation will be relevant for determining whether or not 
to select this operator. If the sea-state does not fall within an appropriate range (again, where 
the precise meaning of appropriate must be learned), the operation may fail. 
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The generated experiments should therefore vary the values of the wild cards (corresponding 
in this example to the max-sea-state value of boom. 1 and the sea-state in sea-sector. 1 
at time latest. 1), generate plans and plan evaluations to collect data about the success of the 
operation for different values of these wild cards, and construct hypotheses about the values 
required for the operator to succeed. 

To select the possible values for each wild card, the system matches each QC against the 
initial world state. From the set of all possible matches (instantiations of the QC), the system then 
selects a representative subset by associating a value with each QC. This subset consists of a list of 
bindings for the wild cards in the QC. (Wild cards include the * argument and class names, but not 
variable names.) One instantiated QC is selected for each value that was seen. 

For example, in ml-get-booml, for the sea-state QC, the matches might be 

(sea-state  sf-bay 1  1 ) 

(sea-state richards-bay 1  2 ) 
(sea-state drakes-bay 11). 

In this case, the values are 1,2, and 1, respectively, and the first and second matches would be 
selected. For each of these matches, one or more constraints are identified that will result in this 
instantiation of the QC in a generated plan. Local variables (those whose value can be selected at 
the time the operator is applied) have variable binding constraints. For nonlocal variables, whose 
value has been determined in a previously applied operator, the process is more complicated, and 
requires that the initial world state be modified in such a way that the variable will be bound as 
desired. For example, sea-sector. 1 in ml-get-booml is bound at a previous planning level to 
a location that is defined as a sensitive area in the planning scenario. We do not have a general 
solution for computing the required modifications, so the user or system designer must tell the 
system the correct predicate(s) to establish for each QC. 

The cross-product of experiments for each QC is formed, resulting in a list of combined 
experiments. This is currently done explicitly, but in principle could be done dynamically as 
individual experiments are selected for each QC. The Select Experiment subprocess then selects 
an experiment from the list, by asking the user to chose one, or by selecting the first experiment on 
the list. An open issue that remains to be resolved is to develop methods for selecting an experiment 
automatically. 

3.2.4     Data Generation 
The Data Generation process uses the selected experiment to create the appropriate input data 

(training examples) for the Inductive Learning subprocess. This process incorporates three 
components, Generate Plan, Evaluate Plan, and Generate Training Example. 

3.2.4.1      Generate Plan 
A plan is generated interactively or automatically, using the constraints represented by the 

selected experiment. The constraints that can be specified in an experiment are as follows. 
• Variable Binding: bind a given variable to a given value in the specified operator. 
• Operator Selection: always select a specified operator when it is applicable. 
• Predicate Assertion: assert one or more predicates in the initial world state. 
• Object Creation: define a new object with given properties before planning. 
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The implementation of these constraints uses SlPE-2's built-in hooks for variable binding, operator 
selection, and predicate/object definition; therefore, we wrote relatively little code to implement 
this module. 

If other plans have already been generated using similar experiments, a limited capability 
exists to reuse those plans. Specifically, the system can define new objects and rebind variable 
values in an existing plan. Therefore, if a new experiment differs from a previous one only in the 
variable-binding constraints, the system can reuse the plan, rather than constructing a new one from 
scratch. Additional development would also allow the system to use SlPE-2's replanning 
capabilities to apply different operator-selection and predicate-assertion constraints to previously 
generated plans. 

3.2.4.2      Evaluate Plan 
The plan is sent to the evaluation module, which returns an evaluation that indicates the 

success or failure of the overall plan and of individual actions or action sequences in the plan. The 
definition of "success" depends on the domain and on the purpose of the operator being learned 
(e.g., whether a unit arrived on time, or oil was successfully cleaned up). 

Plan evaluation is a difficult problem in general. When plan evaluation methods are used in 
conjunction with other tools such as the Operator Learner, the inherent difficulty of plan evaluation 
is exacerbated by the need for the evaluator and learner to share a semantic representation of the 
plan. In the rest of this section, we discuss the problems that arose in this area during this project. 

One factor that made it difficult to assess the success of an operator in the oil-spill domain is 
that there is not a direct mapping between the purpose of a given operator and the quantities 
returned by the evaluation model. There are three primary reasons for this lack of direct mapping: 
first, multiple operators are often applied to achieve a single shared goal, so credit assignment is a 
problem. For example, in the ml -ge t -booml operator, the purpose is to get a certain quantity of 
boom to the location of the operation; this can be done by combining several operators that each 
bring a smaller quantity of boom to the final destination. Therefore, the actions in a given operator 
may succeed, although it fails to achieve its overall purpose. 

Second, the purpose in the SlPE-2 sense may not match the conceptual purpose of the operator. 
In the ml-get-booml operator, the purpose slot lists the boom level as the operator's purpose, but 
a planning expert would say that the actual purpose of this operator is to contain a certain quantity 
of oil. Although the operator clearly would fail if the boom did not arrive in the given location by 
the required time, the operator would also fail if the boom did not work properly in the prevailing 
ocean conditions; this conclusion is not explicitly stated in the purpose slot. 

Finally, even if "containing the oil in the sector" were explicitly stated in the operator's 
purpose, that goal would not be explicitly represented in the evaluation model. Rather, the output 
of the evaluation model specifies the quantity of oil in each sector at each point in time, as well as 
the quantities that have washed up on shore, evaporated, or been transported out of the sector 
(e.g., via skimmer). "Containing the oil" thus must be translated into a quantitative measure of 
those values, which raises many questions: How much oil must be contained (and by what time), 
for the operator to be considered successful? When oil is removed by skimmer and barge, so that 
no oil is left in the sector and no oil has escaped, should the operator be considered to have 
succeeded? If the oil sinks before it is contained, so that it cannot be cleaned up although the ocean 
surface is clear, has the operator succeeded? 
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In the military transportation planning domain, there appears to be a more obvious mapping 
between operator purpose (in deployment planning, the purpose is usually to ensure that a given 
unit arrives at a location by a specified time) and simulator results for at least a subset of 
deployment operators (although this is not always true). In general, we believe that better 
ontologies and reasoning methods for mapping between plans (and planning knowledge) and 
evaluation criteria are needed, for these applications to interact effectively. 

3.2.4.3     Generate Training Example 
The Operator Learner next uses the qualitative constraints to generate a training example for 

the operator being learned, using the new plan and its evaluation. The training example consists of 
the relevant world state (i.e., any instantiations that match the qualitative constraints) at the point 
in the plan where the operator was applied, and a positive or negative label, depending on whether 
the operator succeeded or failed. 

The world state at a specified node is generated by executing the plan up to that node. (The 
effects of this execution are undone after the training example is generated.) The qualitative 
constraints in the operator being learned determine which predicates and properties are extracted 
from the world state. 

The training example is sent to the inductive learning system. This procedure currently uses 
PAGODA, but is implemented as a "black box" module that could be replaced by a different 
induction method, or by multiple competing methods. 

3.2.5     Learning from an Expert User 
In addition to learning from simulators and automated evaluation tools, the Operator Learner 

can learn from an expert's planning choices. Whenever the planner chooses an operator during 
planning, a set of training examples are generated that describe the planning context (i.e., the state 
of the world at the node where the operator was applied). A positive example is generated for the 
chosen operator, indicating that the operator is applicable in that context. Negative examples are 
generated for each operator that is not selected, indicating that the operator does not apply (or is 
less applicable) in the current context. For example, if the planner frequently picks a certain 
operator for actions in the Middle East, and a different operator for actions in the Pacific region, a 
geographic precondition would be learned for each operator. 

In the process of learning from the user, the feedback consists of training examples generated 
by the users from the choices they make during planning. The user may guide the learning process 
by deliberately setting up planning problems on which to train the system, or may simply train the 
system "on the job" by allowing it to observe the expert's planning behavior during the actual 
planning process. The latter method is a particularly useful way to apply machine learning 
techniques during actual planning, since knowledge is continuously acquired throughout the life of 
the system. The incremental nature of PAGODA is an advantage for this type of learning, because 
the system improves its behavior incrementally as each new training example arrives. 

Each training example consists of a description of the world state at a particular point in the 
training example, and an operator that the user did or did not choose; these operators correspond 
to positive and negative training examples, respectively. These examples are used to induce 
candidate preconditions for the operators. The same inductive learning techniques that are used for 
the feedback from the simulator are applied to learn these preconditions. 
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These examples are more likely to be "noisy" or incorrect than the examples received from 
the simulator, for the following reasons: (1) users sometimes make arbitrary or incorrect choices; 
(2) false negatives occur, since more than one operator may be applicable and the operators that 
are not selected are classified as negative examples; (3) the user may understand certain aspects of 
the situation that are not reflected in SlPE-2's world state; (4) users sometimes exhibit superstitious 
behavior (always preferring a particular operator even when another would be more appropriate); 
and (5) planning may later fail, indicating that the operator choice was incorrect. The last of these 
conditions can sometimes be detected by identifying cases in which the system backtracks and an 
alternative operator is applied during backtracking. To remedy the other incorrect examples, 
probabilistic learning methods are used, and learned knowledge is always confirmed with an expert 
user before being added to the system. 

In essence, this process consists of acquiring "hidden" knowledge: that is, knowledge that the 
user has but that may not be explicitly represented in the system. In this case, nothing in the 
learning system's representation of the current world state enables it to distinguish between two 
situations in which the user makes different decisions. The system could infer that there should be 
an additional predicate to represent this distinction, and would then add the predicate to its 
representation for future use. This process would enable us not only to refine the operators, but to 
improve the representation of the domain. 

3.3     PAGODA 
PAGODA is a model for an intelligent autonomous agent that learns and plans in complex, 

nondeterministic domains [desJardins 1992]. The guiding principles behind PAGODA include 
probabilistic representation of knowledge, Bayesian evaluation techniques, and limited rationality 
as a normative behavioral goal. 

We are using only the probabilistic inductive learning component of PAGODA for this project. 
The inductive hypotheses are represented as sets of conditional probabilities that specify the 
distribution of a predicted feature's value, given a set of input features. A probabilistic inference 
mechanism allows PAGODA to make predictions about the value of the output feature in a given 
world state by combining the relevant probabilities. 

Theories are generated by means of a heuristic search process, guided by the training 
examples. The theories are evaluated by means of a Bayesian technique that provides a tradeoff 
between the accuracy and the simplicity of learned theories. The prior probability of a theory is a 
measure of its simplicity—shorter theories are more probable. 

Since SlPE-2 cannot represent the probabilistic theories learned by PAGODA as preconditions, 
we use thresholding to create deterministic preconditions. Information is lost in this process: in 
general, the deterministic preconditions are overly strict (i.e., they sometimes rule out an operator 
in a case where it is, in fact, applicable). Each rule that PAGODA learns states that in situation S, an 
action or operator A succeeds with probability P. The learning system analyzes the theories (rule 
sets) to identify situations S such that if S is true, A succeeds with probability greater than some 
threshold P5WCCC55; if Sis false, A fails with probability greater than another threshold Pfauure. These 
situations are the discrimination conditions for A, and are added to the system as preconditions 
after they are confirmed by the user. 
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To give a very simple example of how inductive learning works, suppose that in 
ml -ge t -b o om 1, the result of evaluating the plan is such that regardless of the specific sea-sector 
and time, whenever the value of the sea-state predicate is 3 or less, the operator succeeds, and 
whenever it is 4 or more, the operator fails. The learning system would form the hypothesis 

(sea-state sea-sector. 1 latest. 1 [1-3]) => success 
(sea-state sea-sector. 1 latest. 1 [4-5]) => failure. 

If there is noise or randomness (e.g., in some cases the operator fails, even though sea-state is 3 or 
less, or sometimes succeeds when sea-state is 4 or 5), the probabilistic hypothesis evaluation model 
built into PAGODA determines the most probable hypothesis. The hypothesis evaluation and 
inductive learning mechanisms of PAGODA are detailed elsewhere [ibid.]. 

3.4 PREDICATE EDITOR 
The Predicate Editor is a revised and generalized version of what was originally called the 

Information Window in SOCAP. Previously, this display was tailored to a particular scenario, 
showing specific world predicates in each of six fixed panes. The generalized Information Window 
allows the user to tailor a presentation for different domains and for different views of a given 
domain, by specifying how many panes appear, and which predicates are displayed in each pane. 

3.5 GKB EDITOR 
Under a separate contract, SRI has developed the GKB Editor for editing class and object 

hierarchies [Karp, Myers, and Gruber 1995]. The GKB Editor provides a graphical interface for 
browsing and modifying classes and instances and their properties. The underlying representation 
is the Generic Frame Protocol (GFP), so object hierarchies created with the GKB Editor can be 
shared with any system that understands (or provides an interface to) the GFP. KATY provides an 
interface to this editor for creating and modifying the SlPE-2 sort hierarchy. 

4   SIMULATORS 

Our original proposal was to develop and apply knowledge acquisition tools in SOCAP's 
military transportation application domain. Due to representational inadequacies of the available 
transportation simulators, and the integration difficulties their use presented, we decided to use an 
oil-spill domain instead. In the following subsections, we discuss the simulators and evaluation 
tools that were available for the oil-spill and military deployment domains, and explain why we 
selected this oil-spill domain. 

4.1     OIL-SPILL DOMAIN 
The Operator Learner demonstrations used an oil-spill planning domain, as noted above. The 

Spill Response Configuration System (SRCS) plans responses to coastal oil spills and identifies 
equipment shortfalls. The SRCS incorporates a spreadsheet-based evaluation model that is used for 
the feedback required by the Operator Learner. 
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The oil-spill domain is a good analogue to the military transportation planning domain, so that 
our development work for the oil-spill-based demonstration can be applied directly to the military 
domain. Both domains are crisis response planning situations, where actions to respond to an 
emergency must be identified, along with the resources needed to perform the actions. In both 
cases, methods for moving the requisite equipment to the crisis site must also be identified. 

The success of an action in a plan in the oil-spill domain translates to the percentage of oil 
cleaned up in the specified sector. In the demonstration scenario, positive instances for the learning 
system are those actions resulting in greater than P% of the oil being cleaned up (where P is a fixed 
value determined by a domain expert). A future research direction would be to explore methods of 
learning the degree of success of an action. 

The success of an action in the oil-spill domain has a direct analogue in the military 
transportation planning domain, where the degree of success is determined by how much time a 
unit is delayed (i.e., whether and by how much time a unit arrives late) and how many resources 
(transportation assets, fuel, or personnel) are used. 

We identified three alternative demonstration scenarios, in addition to the sea-state example 
described in Subsection 3.2. The first of these scenarios was used for the final project 
demonstration, which showed the system learning high-level strategies for oil-spill cleanup by 
observing the user's choices. The three scenarios are outlined below. 

1. In the top-level operators, learn the conditions under which each type of operation is 
effective. This learning activity might involve identifying the priority of each 
targeted sea sector, based on the expected degree of effectiveness of the plan; or it 
might involve simply learning preconditions to identify the best single sea sector. 
The factors relevant to this prediction include 
- The proximity of cleanup site to spill 
- The depth of water (shallower water makes cleanup more effective) 

- The location of protected areas 
- The equipment available 
- Weather conditions. 

2. At the middle level of planning, learn which type of skimmer works best under which 
conditions. The relevant factors include 
- The sea state (a number summarizing the severity of weather, which is in turn 

determined by tides, waves, and currents) 
- The oil thickness (available from the trajectory model) 
- The encounter rate (determined by sweep area, speed, and skim rate, which are 

properties of the boat and boom used) 
- The recovery rate (i.e., the percentage of the oil encountered that is successfully 

skimmed) 
- The efficiency 
- The pump rate 
- The storage capacity (on board, as well as in bladders or tugs available for 

offloading) 
- The personnel available 
- The time of day. 
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3.   At the lowest level of planning, learn to predict the length of boom required for a 
given situation. Relevant factors include 
- The weather and ocean conditions 
- The angle of boom with respect to current (a shallow angle is more effective in 

deflecting, but requires more boom) 
- The ocean current 
- The boom height 
- The purpose of using boom (excluding oil from a protected area, versus 

deflecting it to a shore or water area where it will be cleaned up) 
- The type of boom 
- The depth of water 
- The leakage rate (determined by the above factors) 
- The number of booms (e.g., doubling booms reduces leakage but requires twice 

as many boom feet). 

These scenarios show the wide range of applicability of the learning-based methods at all 
planning levels. Inductive learning methods enable the system to identify the factors relevant to the 
success of each planning operator, and to aggregate these factors to an appropriate level for each 
step in the decision-making process. 

4.2     MILITARY DEPLOYMENT DOMAIN 

In the deployment planning scenario we originally proposed, severe weather conditions 
would cause certain types of ports (e.g., those with unsheltered harbors) to become unavailable, 
and certain types of operations (e.g., transport, loading, and offloading) to take longer than usual. 
In addition, decisions about the allocation of resources such as ports, transportation assets, and 
personnel would be made by matching the capabilities of the resources to the requirements 
imposed by the plan. We decided to use the oil-spill domain instead of the transportation planning 
domain or another military planning domain (e.g., joint operations planning or air campaign 
planning) because of the availability and suitability of a plan evaluator for the oil-spill domain. In 
particular, the available simulators were unable to represent the factors that would impact the 
planning process, as listed above, and/or the cost of integration was too high. In this subsection, we 
briefly describe the simulators that were available for military planning domains. 

4.2.1      PFE 

The Prototype Feasibility Estimator (PFE) is a transportation simulator developed by Bolt 
Beranek and Newman Inc. (BBN). It uses a very simple model of port capability, and does not 
model weather or other aspects of the situation. To be usable in this project, PFE would have to be 
provided with a time-phased description of port availability. In addition, the computation of 
movement times would have to be modified to depend on a wider range of environment features, 
such as the current weather. 

These revisions could be incorporated by using the time-phased port availability information 
to compute PFE's input (i.e., the set of available ports), and by reimplementing PFE's 
time-computation component, which would require substantial development effort. In addition, 
using PFE would require the use of FMERG* to expand the major force-level plans generated by 
SOCAP to the correct level for running the simulator. FMERG has not been maintained since the 
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Integrated Feasibility Demonstration 2 (IFD-2) demonstration; although we had installed it and 
spent some time working on its integration into SOCAP, we realized that it would be unrealistic to 
rely on FMERG for this project. 

4.2.2 TransSim 
We acquired the TransSim transportation scheduler/simulator from the University of 

Massachusetts (UM), and had a series of discussions with members of the TransSim development 
team about using their software. TransSim has some features that might make it a better choice than 
PFE for a military demonstration scenario. TransSim takes into account ship speeds, ship, port, and 
berth availability, and weather conditions; all of these are represented explicitly and are easy to 
vary programmatically. It also incorporates UM's CLIP/CLASP data collection package. On the 
other hand, TransSim expects Time-Phased Force Deployment Data (TPFDD) as input. FMERG 
would therefore be required for translation from the major force level of SOCAP's plans to the 
TPFDD level. As previously explained, the use of FMERG for the project was not feasible. 

4.2.3 TACWAR 
We examined the extensive documentation on the TACWAR wargaming system. TACWAR 

is used for wargaming at the U.S. Central Command and at other locations; it was developed and 
maintained by the Institute for Defense Analysis (IDA) in Washington, D.C. TACWAR was 
promising because it is the simulation system that most closely matches the type of scenario (joint 
military operations) that was encoded by the operators developed for SOCAP as part of IFD-2. 

We concluded that TACWAR would be suitable for use as a simulator to execute high-level 
plans created by SOCAP. SOCAP could be used to determine when a unit arrives and where it is 
located, as well as its mission and posture; given this information, TACWAR would be run in batch 
mode to simulate the battle. The granularity of the representations of units, geography, and events 
used by TACWAR appears similar to that used by SOCAP. 

However, the integration effort required to use TACWAR would have been large. It would 
have required obtaining a copy of TACWAR (which was previously part of the Common 
Prototyping Environment [CPE], but was no longer supported at the time we were evaluating 
simulators for this project); obtaining a suitable, unclassified TACWAR scenario that would 
obviate the creation of the voluminous input files required by TACWAR; implementing the 
scenario in SOCAP; extracting the plan from SOCAP in a form suitable for TACWAR; adding new 
operators to correspond to TACWAR's missions and postures; establishing scenario-controlling 
parameters that are independent of the plan generated by SOCAP; and extracting the results of the 
simulation for use by SOCAP. We concluded that the TACWAR integration effort was beyond the 
scope of this contract. 

4.2.4 CTEM 
We discussed with ISX Corporation the possible use of CTEM in this project. CTEM is used 

in the ACPT for air campaign plan evaluation. We determined that CTEM would be too difficult 
to acquire (because of security classification problems) and would not provide feedback at an 
appropriate level of detail. Also, at the time we were prepared to use it for this project, the 
knowledge acquisition process required for SlPE-2 to work in the ACP domain had not yet been 
completed. 

*FMERG: Force Module Enhancer and Requirements Generator. 
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5    EVALUATION METRICS 

We were unable to perform a formal evaluation of KATY under this contract, due to time and 
funding limitations. Our experience has shown the knowledge editing tools to be extremely useful, 
substantially reducing development time and the likelihood of errors. The Operator Learner 
performed well in the simple demonstration scenarios we developed, and we expect that the 
learning techniques used in the Operator Editor will scale up well. 

We identified a number of operationally relevant evaluation metrics, both quantitative and 
qualitative, for future evaluations of KATY. These metrics include 

• The quality of plans, measured in terms of probability of success (e.g., in a 
simulator), or subjectively by an expert user 

• The time required for a user to create new planning operators 

• The quantity of data needed for acquiring knowledge (e.g., the number of training 
examples required by the inductive learning system) 

• The computational time and memory required to run simulations and the learning 
system. 

In addition to these system evaluation metrics, our approach, acquiring planning knowledge 
from on-line simulators and evaluation tools, raises the issues of plan evaluation and measuring 
plan quality. These metrics are required by any system whose function is to improve planning 
performance, since is impossible to improve performance without some measurement of that 
performance. 

Simulators are one obvious type of plan evaluation tool for the domains in which they exist 
and are considered to be reliable. Many military domains (including transportation planning) use 
simulators to verify plans generated by humans, so it seems reasonable that a learning system 
should consider these simulators to be reliable sources of knowledge. 

In the oil-spill domain, oil-trajectory models and utility analysis of oil-spill damage are 
widely regarded by the community of domain experts as an effective tools for evaluating response 
contingency plans. The demonstration we have developed in this domain uses an oil-trajectory 
model and a spreadsheet-based utility analysis of the generated plan. These tools enable the system 
to gather feedback about the success of the operators being learned, and enable the user to assess 
the quality of the plans that are generated by the system. 

6   RELATED WORK 

The problems we have addressed in the work described here, and the methods we have used 
to solve the problems, are similar to problems and methods described in recent research on 
experiment generation, knowledge acquisition, and learning apprentices. In addition, several 
researchers are studying ways to improve the performance of planning systems via machine 
learning. 
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Gil [1992] describes research on experiment generation for knowledge acquisition in 
planners. The general approach she uses is to identify missing preconditions by observing when 
actions fail, and then to generate experiments to determine the correct precondition. Some of the 
methods described by Gil are applicable to the problem of experiment generation in KATY, but 
many problems remain to be solved (see Section 8). 

Much of the research in the knowledge acquisition community has focused on structuring the 
global knowledge acquisition process. EXPECT is a knowledge acquisition architecture that 
dynamically forms expectations about the knowledge that a problem-solving system needs to 
acquire, and then uses these expectations to interactively guide the user through the knowledge 
acquisition process [Gil and Swartout 1994]. Davis [1993] describes the use of metalevel 
knowledge in TEIRESIAS, an expert system for stock market investment advising, to guide 
identify new rules to be added to the expert system. The metalevel knowledge allows the system 
to "know what it knows," and therefore to identify and repair bugs in its knowledge base (missing 
or incorrect knowledge). Eshelman et al. [1993] describe MOLE, a knowledge acquisition system 
for heuristic problem solving. MOLE generates an initial knowledge base interactively, and then 
detects and corrects problems by identifying "differentiating knowledge" that distinguishes among 
alternative hypotheses. Ginsberg, Weiss, and Politakis [1993] have developed SEEK, which 
performs knowledge base refinement by using a case base to generate plausible suggestions for rule 
refinement. These methods, which view the knowledge base as a whole, complement the Operator 
Learner's approach of focusing on refining individual operators. 

Learning apprentices are a recent development in knowledge acquisition tools. Mitchell, 
Mahadevan, and Steinberg [1993] characterize a learning apprentice as an "interactive, 
knowledge-based consultant" that observes and analyzes the problem-solving behavior of users. 
One advantage of a learning apprentice is that it is running continuously as the system is used by 
a wide range of users; thus, the evolving knowledge base reflects a broad range of expertise. These 
researchers developed the LEAP apprentice, which uses explanation-based learning (EBL) 
techniques to explain and generalize cases (traces of the user's problem-solving behavior) in the 
domain of digital circuits. DISCIPLE [Kodratoff and Tecuci 1993] also uses EBL, as well as 
similarity-based learning, to acquire problem-solving knowledge in the domain of design for the 
manufacturing of loudspeakers. The Operator Learner is similar to a learning apprentice in its 
mode of learning from the user, but uses inductive methods rather than EBL, allowing the system 
to acquire a broader range of new knowledge without the need for domain theories. Since we also 
learn from external simulators, there is less burden on the user to provide a complete set of training 
examples from which the system learns. 

Wang and Veloso [1994] have developed a system that inductively learns planning control 
knowledge. Their system makes some simplifying assumptions (e.g., that there is no randomness, 
and that the system has a complete domain representation) that limit the applicability of their 
approach to complex, real-world domains. KATY permits randomness, and allows the user to guide 
the learning process using QCs, which we believe to be critical for large-scale domains. 

Calistri-Yeh and Segre [1994] describe an ARPI-sponsored adaptive learning and planning 
system (ALPS). The primary mechanism for learning within their system is the use of a set of 
speedup learning techniques to improve planning performance. Their Probabilistic Theory 
Revision mechanism refines incorrect or incomplete domain theories, and can be viewed as a type 
of learning or adaptation. Veloso and Borrajo [1994] use a combination of bounded explanation 
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and inductive generalization to learn control rules for planning systems. Learning control rules is 
a slightly different problem than that addressed by KATY—the former focuses on improving the 
efficiency of the planning process, whereas the latter is concerned with its correctness. These two 
methods could be combined in order to improve performance along both dimensions 
simultaneously. 

7    PUBLICATIONS 

The following publications were written during the contract. These publications are also 
included in the list of references in Section 9. 

• desJardins, M. 1994a. "Evaluation of Learning Biases using Probabilistic Domain 
Knowledge," in Computational Learning Theory and Natural Learning Systems, 
Vol. 2, eds. S.J. Hanson et al., the MIT Press, Cambridge, Massachusetts. 

• desJardins, M. 1994b. "Knowledge Acquisition Tools for a Military Planning 
System," presented at the 1994 IEEE Conference on Tools with AI, New Orleans, 
Louisiana (November); in Proc. 1994 IEEE Conference on Tools with AI, Morgan 
Kaufmann Publishers Inc., San Francisco, California. 

• desJardins, M. 1994c. "Knowledge Development Methods for Planning Systems," 
presented at the AAAI Fall Symposium on Planning and Learning, New Orleans, 
Louisiana (November); in Working Notes of the AAAI Fall Symposium on Planning 
and Learning, AAAI Press, Menlo Park, California. 

• desJardins, M. 1994d. "The Use of Relevance to Evaluate Learning Biases," 
presented at the AAAI Fall Symposium on Relevance, New Orleans, Louisiana 
(November); in Working Notes of the AAAI Fall Symposium on Relevance, AAAI 
Press, Menlo Park, California. 

• Gordon, D.F., and M. desJardins. 1995. "Evaluation and Selection of Biases in 
Machine Learning," Machine Learning 20(1/2), pp. 5-22 (July/August). 

• desJardins, M. 1995. "Goal-Directed Learning: A Decision-Theoretic Model for 
Deciding What to Learn Next," in Goal-Driven Learning, eds. A. Ram and 
D.B. Leake, the MIT Press pp. 241-250, Cambridge, Massachusetts. 

• desJardins, M. 1996. "Knowledge Acquisition Tools for Planning Systems," in 
Advanced Planning Technology: Technological Achievements of the ARPAl Rome 
Laboratory Planning Initiative, ed. A. Täte, AAAI Press, Menlo Park, California. 

8    CONCLUSIONS AND FUTURE WORK 

Automated and semiautomated tools for knowledge acquisition will become increasingly 
essential as large-scale planning systems are developed and deployed. Our research in this area has 
led to initial prototypes of two types of tools: interactive graphical editors for developing planning 
knowledge, and an inductive learning system that uses simulator feedback and the user's planning 
choices to refine and verify partial operators. 
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On the basis of ongoing usage and evaluation of these prototypes, we believe that both the 
editor and the learning system form essential parts of a knowledge developer's toolkit for 
constructing large-scale planning applications. The key advantages these tools provide, which will 
enable the development, deployment, and ongoing maintenance of realistic planning applications, 
are 

• Template-based editing methods for constructing individual planning operators, 
reducing the likelihood of errors in the development process, and reducing the 
tedium of operator construction 

• A framework for acquiring knowledge from multiple sources (plan evaluation 
modules, simulators, and expert planner behavior), guided by initial approximations 
provided by a knowledge developer. 

These tools focus on the development and refinement of individual planning operators. We 
also recognize the need for additional tools in KATY, particularly those that guide and manage the 
development of the knowledge base as a whole. Some such tools are being developed by others in 
the planning research community; for example, researchers at the Jet Propulsion Laboratory have 
developed specialized techniques for assessing the consistency and completeness of a knowledge 
base [Chien 1996]; and ISI's EXPECT project provides a framework for managing a structured 
knowledge acquisition process [Gil and Swartout 1994]. These methods could be generalized and 
applied within the SlPE-2 framework. 

Future Work. Many of the problems raised during this work have not been addressed in depth 
by the machine learning research community. Most of the current research focuses on algorithms 
and methods for inductive or explanation-based learning. While developing good inductive 
learning methods is important (and we list some specific research directions in that area below), 
this work also points to the need for supporting technologies that will enable the effective 
application of inductive learning methods. These supporting technologies include representing and 
reasoning about bias, experiment generation, knowing when to learn and when to stop learning, 
and evaluation methods for complex forms of learned knowledge. 

The qualitative constraints used by the operator learner provide a way for the knowledge 
developer to feed partial knowledge into the system, without having to specify all of the details of 
an operator's preconditions. In machine learning terminology, the developer is imposing a bias on 
the learning system. Generalizing the representation and implementation of qualitative constraints 
would broaden the types of bias that could be introduced into this process. 

The experiment generation capabilities that we developed for this project were tailored for the 
small learning problems we examined. In large-scale domains, methods will be needed to select an 
appropriate subset of experiments to guide the learning process. Very little work has been done in 
this area; the techniques developed by Gil [1992] provide some interesting ideas for directions, but 
are limited to fairly simple domains. 

The development of stopping criteria that enable the system to know when to stop learning is 
directly related to the problem of experiment generation: to construct an efficient sequence of 
experiments, one must know when enough experimentation has been performed (or, equally 
important, when experimentation is not yielding a useful answer, and other approaches should be 
tried). 
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Evaluating the learned knowledge is a nontrivial problem in general, and particularly difficult 
in a planning domain. Inductive learning methods are usually evaluated against a test set of 
examples that are drawn from the same sample population as the training examples. In the case of 
planning knowledge, it may be difficult to generate a test set, and, more importantly, the real 
effectiveness of a planning operator can be determined only by using it in the planning process. 
Therefore, evaluating the learning process corresponds to evaluating generated plans, which is an 
open problem for most application domains. 

Finally, the inductive learning methods that have been developed by the machine learning 
research community have generally focused on a batch learning situation (where all training 
examples are available at the onset of learning), predicting discrete classes using a well-defined set 
of input features (e.g., predicting a disease type from a set of symptoms). Our observation is that 
for planning problems, and for a learning context where data is expensive to collect and may arrive 
continuously over the lifetime of the system, different methods are needed. In particular, 
incremental learning methods that continuously revise hypotheses as new data arrives are 
necessary. These learning methods must be able to predict numerical values (e.g., the expected 
degree of success of an operation, time to complete an activity, or amount of a resource required), 
and must be able to reason at a meta-level about the representation they use (e.g., they should be 
able to recognize when the domain representation should be extended, as when no good theory can 
be learned by using the current representation). 

We believe that the prototypes we have developed demonstrate the utility and necessity of 
providing tools for knowledge acquisition in the development of planning applications. The tools 
in their current form, particularly the operator editor, already provide useful functionality, and are 
being used to support knowledge development in an ongoing process. However, this work has also 
highlighted the need for additional research directions in machine learning and knowledge 
acquisition. 
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MISSION 
OF 

ROME LABORA TORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


